ГРМ, КШМ и ГБЦ

Кривошипно-шатурный и газораспределительный механизмы ДВС. Классификация КШМ и ГРМ. Общее устройство и принцип работы.

Кривошипно-шатунный механизм (КШМ) представляет собой важный механизм автомобильного двигателя, который преобразовывает поступательные движения поршневой системы во вращательное движение коленчатого вала двигателя, от которого, в свою очередь, это движение передается на колеса автомобиля, что и приводит машину в движение.

Под давлением газов, которые образуются в цилиндрах двигателя при сгорании топливно-воздушной смеси, поршень совершает поступательное движение по направлению к коленчатому валу. Важные детали механизма, а именно: поршень, шатун и вал помогают преобразовывать движения поступательного характера в движения вращательного, что в свою очередь запускает вращение колес автомобиля. В обратном порядке взаимодействие вала и поршня выглядит следующим образом: вал при вращательном движении через детали механизма – вал, шатун и поршень, преобразовывает энергию в поступательное поршневое движение.
Как устроен кривошипно-шатунный механизм

Общее устройство:

КШМ состоит из 2-х групп деталей: неподвижных и подвижных.

К неподвижным деталям относятся:

— блок-картер; головки блока-картера; гильзы цилиндров; крышка распределительных шестерен; смазочная емкость; крышки головки блока; картер маховика; крышки коренных подшипников коленчатого вала; вкладыши коренных подшипников; детали крепления и уплотнения.

К подвижным деталям относятся:

— поршни; поршневые кольца; поршневые пальцы; шатуны; коленчатый вал; маховик.

Поршень воспринимает давление газов, передает его через поршневой палец на шатун, а также осуществляет вспомогательные такты.

Компрессионные кольца уплотняют газовый стык между поршнем и стенкой цилиндра и предотвращают утечку рабочего тела.

Маслосъемные кольца удаляют излишки масла со стенок цилиндра в картер.

Поршневой палец служит для шарнирного соединения поршня с шатуном и передачи усилия от поршня к шатуну.

Шатун служит для передачи усилия от поршневого пальца на коленчатый вал.

Коленчатый вал воспринимает усилие от шатуна и преобразует его в крутящий момент.

Маховик предназначен для уменьшения неравномерности вращения коленчатого вала, а также для вывода поршней из мертвых точек благодаря накопленной кинетической энергии во время такта рабочего хода. Кроме того, маховик облегчает работу двигателя при разгоне и преодолении кратковременных перегрузок.

Классификация КШМ:

В двигателях внутреннего сгорания автомобильной техники используются три типа кривошипно-шатунного механизма:

— центральный (аксиальный) КШМ, у которого оси цилиндра и поршневого пальца пересекаются с осью коленчатого вала (КамАЗ-740.10, ЯМЗ-238В);

— смещенный (дезаксиальный) КШМ, у которого ось цилиндра не пересекает ось коленчатого вала (ГАЗ-51), или ось поршневого пальца смещена относительно оси цилиндра (ЗИЛ-5081.10, ЗМЗ-66-06 и ЗМЗ-513);

— с прицепным шатуном КШМ, у которого прицепной шатун соединен пальцем с главным шатуном в его кривошипной головке (В-46-2С1, Д12А-525А).

Газораспределительный механизм (ГРМ) — механизм управления фазами газораспределения двигателя внутреннего сгорания.

Состоит из распределительного вала — или нескольких валов — и механизмов привода к ним, клапанов, открывающих и закрывающих впускные и выпускные отверстия в камерах сгорания, и передаточных звеньев — толкателей, штанг, коромысел и некоторых вспомогательных деталей (регулировочных элементов, клапанных пружин, системы поворота клапанов и проч.)

Система привода распределительного вала в любом случае обеспечивает его вращение с угловой скоростью, равной 1/2 угловой скорости коленвала.

Классифицирующими признаками для конструкции газораспределительного механизма являются расположение клапанов и распределительного вала.

По расположению клапанов выделяют двигатели:

· Нижнеклапанные (с боковым расположением клапанов);

· Верхнеклапанные (в старой литературе — «с подвесными клапанами»);

· Со смешанным расположением клапанов.

По расположению распределительного вала выделяют двигатели:

· С распредвалом, расположенным в блоке цилиндров (Cam-in-Block);

· С распредвалом, расположенным в головке блока цилиндров (Cam-in-Head);

· Без распределительного вала.

Конструкция га­зо­расп­ре­де­ли­тель­но­го механизма отвечает за плановое и поочередное открытие-закрытие впуск­ных и выпускных клапанов каждого цилиндра, обеспечивая своевременную подачу рабочей смеси в цилиндр и выпуск из него отработавших газов.

Поршень, двигаясь от ВМТ к НМТ, в первом такте создает разряжение воздуха, за счет чего в цилиндр поступает топливо или уже готовая рабочая смесь. Происходит это через своевременно открывающийся впускной клапан, который также своевременно при достижении поршня НМТ — зак­ры­ва­ет­ся. Затем в цилиндре идет такт сжатия, а следом сам рабочий ход, преобразующий энергию горения в механическую энергию, позволяющую проворачивать коленчатый вал и зас­тав­лять в конечном итоге двигаться автомобиль через цепочку деталей и узлов. Зак­лю­чи­тель­ный такт — выпуск, когда при движении поршня из НМТ к ВМТ открывается выпускной клапан и все газы под давлением поршня, за счет уменьшения пространства в цилиндре, выдавливаются через выпускные каналы и глушитель в атмосферу. Все вот это и обес­пе­чи­ва­ет ГРМ.

Главным составляющим здесь являются не столько впускные и выпускные клапаны, сколько распределительный вал, заставляющий их поочередно работать, который, в свою очередь, полностью зависит от вращения коленчатого вала — иначе процесс получения энергии не выйдет. Рассмотрим устройство ГРМ двигателя детальнее.

Коленчатый вал имеет на конце жестко закрепленную шестеренку. Энергия вращения коленвала передается через эту шестеренку посредством ременной передачи на рас­пре­де­ли­тель­ный вал, имеющий подобное зубчатое колесо на конце, которое заставляет вращаться вал. На вале есть выступы, так называемые «кулачки». Именно этими кулачками вал, вращаясь, воздействует поочередно на клапаны, заставляя те своевременно открываться и закрываться. А за счет встроенных пружин у каждого клапана, они всегда возвращаются в исходное положение. Конструкция распределительного вала выполнена таким образом, что каждый клапан в каждом цилиндре открывается и закрывается именно в тот момент, когда этого требует нужный такт, происходящий в каждом отдельном цилиндре.

Классический вариант расположения распределительного вала в верхней части дви­га­те­ля получил название ГРМ с «верхним расположением распределительного вала», который мы и видим на рисунке.

Для ГРМ предусмотрен ряд регулировок, настройка которых обеспечивает надежную работу двигателя автомобиля в целом, но на данном этапе целью ставилось понять сам принцип работы ГРМ и его важные составляющие в процессе получения механической энергии. Все особенности и нюансы устройства ГРМ, как и любого другого механизма, рассмотрим при детальном изучении.

При рассмотрении работы ГРМ необходимо выделить два этапа: порядок работы цилиндров двигателя и фазы газораспределения.

Порядок работы цилиндров

Порядок чередования одноименных тактов в разных цилиндрах называется порядком работы цилиндров силового агрегата. Порядок работы зависит от положения шеек ку­лач­ко­во­го и коленчатого распределительных валов и расположения цилиндров.

У четырехцилиндрового однорядного четырехтактного мотора такты чередуются через 180°, порядок работы может быть 1-2-4-3 («Волга) или 1-3-4-2 (ВАЗ – 2106, «Москвич–2140»).

Под фазами газораспределения подразумевают начальные моменты открытия и конечные моменты закрытия клапанов, которые выражены в градусах угла поворота коленвала относительно мертвых точек. Чтобы цилиндры лучше очищались от от­ра­бо­тав­ших газов, выпускному клапану необходимо открываться до достижения поршнем НМТ, а процесс закрытия должен происходить после ВМТ. С целью лучшей наполненности цилиндров смесью впускному клапану необходимо открываться до достижения поршнем ВМТ, а свое закрытие выполнять после прохождения НМТ. Временной отрезок, в течение которого оба клапана одновременно открыты (выпускной и впускной), называют пе­рек­ры­ти­ем клапанов.

Фазы газораспределения подбираются специалистами на заводах опытным путем в зависимости от конструкции впускной и выпускной системы двигателя и его быст­ро­ход­нос­ти. При этом стремятся применять колебательное движение газов в выпускной и впускной системах таким образом, чтобы к конечному положению закрытия впускного клапана перед ним образовалась бы волна давления, а к конечному этапу закрытия выпускного клапана за ним бы формировалась волна разрежения. При данном подборе фаз газораспределения одновременно удается улучшить наполнение цилиндров свежей смесью, а также более качественней их очистить от отработавших газов.

Правильность монтажа механизма ВМТ газораспределения устанавливается за­цеп­ле­ни­ем распределительных шестерен с присутствующими метками на них. Отклонение при монтаже фаз газораспределения хотя бы на три зуба звездочки или шестерни распредвала приводит к значительному удару клапана о поршень, потери компрессии, поломке клапана или мотора. Постоянство фаз газораспределения сохраняется только при соблюдении в клапанном механизме теплового зазора. Увеличение зазора способствует уменьшению про­дол­жи­тель­нос­ти открытия клапана.

Устройство и принцип работы КШМ и ГРМ

КШМ предназначен для преобразования возвратно-поступательного движения поршней во вращательное движения коленвала.

блок цилиндров с картером

Блок цилиндров с картером из алюминиевого сплава, состоит из двух полублоков, расположенных под углом 90°. Стенки блока составляют водяную рубашку цилиндров. В нижней части стенок цилиндров выполнены гнезда под гильзы цилиндров. Гильзы вставные, мокрые из серого чугуна. В верхней части запрессованная втулка из специального чугуна, повышающая долговечность гильзы.

Поршни изготовлены из алюминиевого сплава. Для улучшения прирабатывания они покрыты слоем олова. Поршень состоит из днища, головки, юбки. В головке выполнены кольцевые проточки для поршневых колец. В юбке — отверстия для поршневого пальца, называется бобышками. Поршневые кольца: верхние — компрессионные, нижние — малосьемные, изготовлены из серого чугуна.

Поршневые пальцы: предназначены для сочленения поршня с шатуном, пальцы плавающего типа, стальные, от осевого перемещения удерживаются стопорными кольцами.

Шатун — передает усилие от поршня на коленчатый вал. Он стальной, двутаврового сечения. На одну шатунную шейку коленвала устанавливается два шатуна. В верхнюю головку шатуна вставляются бронзовые втулки с отверстием для смазки. Нижняя головка шатуна разъемная. Нижняя часть разъема, называется крышкой, присоединяется болтами. По всей длине шатуна выполнено отверстие для подачи масла к кольцу, а в нижней головке — отверстие для впрыскивания масла на стенки цилиндра.

Коленчатый вал воспринимает усилия от поршней и преобразует их в крутящий момент, который затем через маховик передается на агрегаты трансмиссии.

Коленвал пятиопорный, отлит из высокопрочного чугуна. Коренные и шатунные шейки полые. Вал имеет шесть противовесов и по всей длине имеет масляный канал с отверстиями в шейках. В передней части выполнены посадочные поверхности со шпоночными канавка­ми для шкива и распределительной шестерни.

На концах коленвала при его установке ставятся сальники. Задний конец заканчивается фланцем для крепления маховика. В торце заднего конца — расточка для подшипника пе­реднего конца первичного вала коробки передач.

Коренные и шатунные подшипники имеют тонкостенные вкладыши, изготовленные из стальной ленты, залитой антифризным слоем.

для вывода поршней из мертвых точек и создания плавного вращения коленвала;

является ведущим диском сцепления;

для запуска двигателя стартером;

для установки зажигания.

Маховик отлит из чугуна и крепится к фланцу коленвала. Отверстия для крепления расположены не симметрично. По периметру маховика зубчатый венец для привода от шестерни стартера. В обод маховика запрессован шарик для установки зажигания.

Картер отлит заодно с блоком цилиндров. В его ребрах крепятся коленчатый и распределительный валы.

В нижней части картера крепится поддон, который является резервуаром для масла. К блоку цилиндров крепятся различные приборы системы двигателя.

Газораспределительный механизм служит для своевременного впуска в цилиндры горючей смеси и удаления отработанных газов.

клапаны с деталями их крепления;

направляющие втулки клапанов;

Распределительный вал служит для своевременного открывания клапанов в порядке работы цилиндров. Он стальной, кованный вращается с пяти подшипниками, представляемые собой втулки из сталелистовой ленты.

На валу выполнены пять опорных шеек, шестнадцать кулачков, шестерня привода масляного насоса и прерывателя.

Толкатель заканчивается закаленной цилиндрической поверхностью, которая действует на стержень клапана. В короткое плечо ввертывается регулировочный болт, который стопорится гайкой.

Клапаны изготовлены из жаропрочной стали (рассказать и показать крепление клапана). Направляющие втулки клапанов изготовлены из металлокерамики.

Седла клапанов изготовлены из специального чугуна, рабочая фаска под углом 45°.

Зазор между стержнем клапана и коромыслом нормальный 0,29 — 0,3 — на холостом ходу.

Распределительные шестерни , детали ГРМ приводятся в действие парой распределительных шестеренок. Ведущая чугунная, насажена на коленчатый вал и ведомая текстолитовая, насажена на распределительный вал. Для установки шестерен на них имеются метки.

Уход за механизмами:

При КО: запустить двигатели и проверить работу (прослушав) на всех режимах работу КИП.

При ЕТО: очистить двигатели, проверить работу на всех режимах, работу КИП. Услышав стук клапанов, произвести регулировку.

При ТО-1 и ТО-2: Выполнить работы ЕТО. Провести затяжку гаек шпилек головки блока. Подтягивать на холодном двигателе.

Дата добавления: 2016-10-07 ; просмотров: 1834 | Нарушение авторских прав

Устройство современного двигателя

Устройство газораспределительного механизма двигателя внутреннего сгорания: назначение, принцип работы

Основное назначение газораспределительного механизма (ГРМ ) — своевременная подача горючей смеси из топлива и воздуха (топливо-воздушной смеси) в камеру сгорания и вывода газов из цилиндров двигателя.

Работа ГРМ заключается в своевременном открытии-закрытии впускных и выпускных клапанов за что отвечает клапанный механизм.

Принцип действия газораспределительного механизма

Работа газораспределительного механизма заключается в синхронном движении двух валов – коленчатого вала и распределительного вала. Параллельное вращение валов обеспечивает своевременное открытие и закрытие впускных и выпускных клапанов цилиндров двигателя.

Во время вращения распределительного вала его кулачки воздействуют на рычаги, которые в свою очередь передают усилие на клапанные стержни, что и приводит к открытию клапанов.

При дальнейшем вращении распределительного вала клапаны закрываются, благодаря занятию кулачками начальной позиции.

Классификация ГРМ

Современные автомобильные двигатели получили различные типы газораспределительных механизмов, разработка которых была основана на опыте эксплуатации более ранних моделей.

Классификация ГРМ по четырем основным различиям:

  1. По расположению распределительного вала :

2. По количеству распределительных валов :

один распредвал (SOHC — Single OverHead Camshaft)

два распредвала (DOHC — Double OverHead Camshaft);

3. По числу клапанов – 2, 3, 4, 5;

4. По приводу распределительного вала :

— цепной привод от коленчатого вала;

— шестеренчатый привод от коленчатого вала;

— ременной привод коленчатого вала.

Чаще всего встречается верхнее расположение распределительного вала в головке двигателя – это объясняется простотой конструкции и эффективностью работы, уменьшением массы механизма. Открытие и закрытие клапанов в газораспределительном механизме такого типа осуществляется с помощью толкателей.

Устройство газораспределительного механизма

Газораспределительный механизм состоит из:

  1. распределительного вала ;
  2. толкателей ;
  3. клапанов ;
  4. коромысла ;
  5. штанги ;
  6. привода.

1. Распределительный вал. Вращение распределительного вала приводит к своевременному открытию и закрытию клапанов газораспределительного механизма в зависимости от последовательности работы цилиндров двигателя, учитывая фазы газораспределения газов в механизме. Изготавливают распределительный вал из высокопрочной закаленной стали или чугуна. На валу ГРМ имеются опорные шейки и кулачки. Форма кулачков влияет на рабочие процессы распределения горючей смеси и газов, частоту и время открытия, закрытия клапанов. В торце распределительного вала ГРМ крепится звездочка (на которую устанавливается цепь) или шкив привода вала (на которую одевается ремень). Вал устанавливается в корпусе на подшипниках. В целях предотвращения осевых смещений распределительный вал имеет упорный фланец.

2. Толкатели. Толкатели – это детали газораспределительного механизма, которые служат для передачи усилий от кулачков распределительного вала к штангам коромысел. Толкатели изготавливают из высокопрочной стали или чугуна.

Виды толкателей: роликовые, цилиндрические, грибовидные.

Движение толкателей происходит в корпусах, закрепленных на блоке цилиндров или по направляющим.

3. Клапаны. Клапаны служат для подачи горючей смеси в цилиндры двигателя и вывода отработанных газов. Различают впускные и выпускные клапаны. Впускные служат для впуска горючей смеси, а выпускные клапаны служат для выпуска отработавших газов.

Конструкция клапана. Клапан состоит из стержня и головки. НА клапанной головке имеется кромка под 45 градусов для лучшего прилегания клапана. Впускной клапан отличается от выпускного диаметром. Выпускной клапан значительно больше по диаметру, чем впускной, так как объем отработавших газов превышает объем подающейся горючей смеси. Клапаны ГРМ установлены в головке блока цилиндров. Место их соединения называется седлом и имеет конусную форму. Для герметизации цилиндра предназначен клапанный механизм. Для улучшения герметизации цилиндра проводят процесс под названием притирка клапанов.

Впускные клапаны изготавливают из стали с хромистым покрытием, а выпускные клапаны из жаропрочной стали. Седла клапанов изготавливают из жаропрочного чугуна.

Движение стержней клапанов осуществляется по направляющим втулкам, которые изготавливаются из чугуна или стали. Направляющие соединены с головкой блока цилиндров . Клапаны оснащены внутренней и наружной пружинами. Пружины же крепятся с помощью тарелок, сухарей и шайб.

Открытие клапанов осуществляется через усилие, которое передается от распределительного вала на клапан.

Газораспределительный механизм современных двигателей устроен таким образом, что на каждый цилиндр двигателя имеется по два клапана впуска и два клапана выпуска. Для снятия клапанов используют рассухариватели клапанов.

4. Штанги

Штанги служат для передачи усилия от толкателей к коромыслам. Штанги толкателей могут иметь форму полых цилиндрических стержней со стальными наконечниками.

Штанги изготавливают из износостойкого алюминиевого сплава, крепятся с одной стороны к коромыслу, а с другой – к толкателю.

5. Коромысло

Коромысло служит для передачи усилия от штанги к клапанам. Коромысло выполнено в виде рычага с двумя плечами, который крепится на оси. При этом одно плечо длиннее, чем другое (возле штанги).

Коромысла изготавливают из прочной стали. Устанавливают коромысло на оси, которая крепится к головке цилиндров, на специальных втулках. Втулки предназначены для уменьшения трения между осью и коромыслом.

6. Привод распределительного вала

Распределительный вал приводится в движение от коленчатого вала при помощи привода, который может быть, как мы говорили цепной, шестеренчатый, ременной.

Скорость вращения распределительного вала в 2 раза меньше, чем скорость вращения коленчатого вала, что обеспечивается передаточным числом звездочки, либо размером шкива.

Таким образом, за два вращения коленчатого вала, распределительный вал совершит только одно вращение, что необходимо для осуществления одного рабочего цикла.

Часто встречается в обиходе автомобилистов такой термин, как тепловой зазор.

LiveInternetLiveInternet

ТоррНАДО — торрент-трекер для блогов

неизвестно

Поиск по дневнику

Подписка по e-mail

Постоянные читатели

Статистика

Неисправности и техническое обслуживание КШМ и ГРМ

Среда, 27 Октября 2010 г. 22:46 + в цитатник

Техническое обслуживание двигателя состоит из проверки его технического состояния внешним осмотром и в процессе работы, выявления неисправностей, выполнения контрольно-регулировочных, смазочных и крепежных работ по кривошипно-шатунному и распределительному механизмам, системам охлаждения, смазки, питания и зажигания.

Неисправности кшм

обусловливаются естественным изнашиванием сопряженных деталей.

Основными признаками неисправности кривошипно-шатунного механизма являются:

  • уменьшение компрессии в цилиндрах;
  • появление шумов и стуков;
  • прорыв газов в картер и появление из маслоналивной горловины голубоватого дыма с резким запахом;
  • увеличение расхода масла;
  • разжижение масла в картере (из-за проникновения туда паров рабочей смеси при тактах сжатия);
  • забрасывание свечей зажигания маслом, отчего на электродах образуется нагар и ухудшается искрообразование. В итоге повышается расход топлива и снижается мощность двигателя.

Неисправности газораспределительного механизма наиболее часто проявляются в нарушении зазоров между стержнями клапанов и толкателями. Это приводит к нарушению фаз газораспределения, ухудшению наполнения цилиндров (вследствие запаздывания открытия впускного или выпускного клапанов при увеличенных зазорах).

Увеличенные зазоры между стержнями клапанов и толкателями вызывают стуки и преждевременный износ деталей распределительного механизма. Малые зазоры или их отсутствие приводят к неплотной посадке клапанов и пропуску рабочей смеси во впускной и выпускной трубопроводы. В результате уменьшается компрессия в цилиндрах двигателя и его мощность. Признаками этих неисправностей служат появление вспышек в карбюраторе и хлопков в глушителе.

Техническое обслуживание кривошипно-шатунного (КШМ) и газораспределительного механизмов (ГРМ)

  • проверка стабильности состояния и подтягивание креплений (крепежные работы) опоры двигателя к раме, головки цилиндров и поддона картера к блоку, фланцев впускного и выпускного трубопроводов и других соединений;
  • проверка технического состояния или работоспособности (контрольные работы) кривошипно-шатунного и распределительного механизмов;
  • регулировочные работы и смазка.

Крепежные работы

Для предотвращения пропуска газов и охлаждающей жидкости через прокладку головки цилиндров необходимо периодически проверять крепление головки ключом с динамометрической рукояткой с определенным усилием и последовательностью. Момент затяжки и последовательность подтягивания гаек устанавливают автомобильные заводы.

Чугунную головку целиндров крепят, когда двигатель находится в нагретом состоянии, а головку из алюминиевого сплава – в холодном.

Необходимость подтягивания крепления головок из алюминиевого сплава в холодном состоянии объясняется неодинаковым коэффициентом линейного расширения материала болтов и шпилек (сталь) и материала головки (алюминиевый сплав). Поэтому подтягивание гаек на горячем двигателе не обеспечивает после его остывания необходимой плотности прилегания головки цилиндров к блоку.

Затяжку болтов крепления поддона картера во избежание деформации картера, нарушения герметичности проверяют также с соблюдением последовательности, т.е. поочередным подтягиванием диаметрально противоположных болтов.

Контроль состояния КШМ и ГРМ

Техническое состояние этих механизмов можно определять:

  • по расходу (угару) масла в эксплуатации и падению давления в системе смазки;
  • по изменению давления (компрессии) в цилиндрах двигателя в конце хода сжатия;
  • по разрежению во впускном трубопроводе;
  • по количеству газов, прорывающихся в картер двигателя;
  • по утечке газов (воздуха) из цилиндров;
  • наличию стуков в двигателе.

Угар масла в малоизношенном двигателе незначителен и может составлять 0,1-0,25 л/100 км пробега. При значительном общем износе двигателя угар может достигать 1л/100 км и более, что обычно сопровождается сильным дымлением.

Давление в масляной системе двигателя должно быть в пределах, установленных для данного типа двигателя и применяемого сорта масла. Снижение давления масла на малых оборотах коленчатого вала прогретого двигателя указывает на наличие недопустимых износов подшипников двигателя или неисправности в системе смазки .

Падение давления масла по манометру до 0 указывает на неисправность манометра или редукционного клапана.

Повышенное давление в системе смазки может возникнуть в результате большой вязкости или засорения масляной магистрали.

Компрессия служит показателем герметичности цилиндров двигателя и характеризует состояние цилиндров, поршней и клапанов. Герметичность цилиндров может быть определена компрессометром.

Компрессию проверяют после предварительного прогрева двигателя до 70-80 ºС при вывернутых свечах. Установив резиновый наконечник компрессометра в отверстие свечи, провертывают стартером коленчатый вал двигателя на 10-12 оборотов и записывают показания компрессометра. Проверку повторяют 2-3 раза для каждого цилиндра.

Если величина компрессии на 30-40 % ниже нормы, это указывает на наличие неисправностей (поломку или пригорание поршневых колец, негерметичность клапанов или повреждение прокладки головки целиндров ).

Разрежение во впускном трубопроводе двигателя замеряют вакуумметром. Величина разрежения у работающего на установившемся режиме двигателей может изменяться не только от изношенности цилиндро-поршневой группы, но и от состояния деталей газораспределения, установки зажигания и регулировки карбюратора.

Таким образом, данный метод контроля является общим и не позволяет выделить ту или иную неисправность по одному показателю.

Количество газов, прорывающихся в картер двигателя, изменяется в результате неплотности сопряжений цилиндр-поршень-поршневое кольцо, увеличивающейся по мере изнашивания указанных деталей. Количество прорывающихся газов замеряют при полной нагрузке двигателя.

Устройство автомобилей

Кривошипно-шатунный механизм

Основное назначение кривошипно-шатунного механизма – преобразовывать возвратно-поступательное движение поршня во вращательное движение коленчатого вала. Функция для автомобильного двигателя очень важная — ведь конечное звено любого автомобиля, его движитель — колесо перемещает обозначенное транспортное средство посредством вращательного движения.
Поскольку в тепловом двигателе все детали и узлы, составляющие кривошипно-шатунный механизм, работают в условиях высоких температурных и механических нагрузок, к их конструкции предъявляются соответствующие требования, определяющие их надежность и работоспособность. От выполнения этих требований во многом зависит надежность и приемлемый ресурс двигателя в целом.

К кривошипно-шатунному механизму (КШМ) двигателя предъявляют следующие требования:

  • высокие прочность и жесткость;
  • коррозионная и механическая износостойкость;
  • минимальная масса;
  • плотная посадка поршня в цилиндре;
  • уравновешенность вращающихся деталей.

Кроме соблюдения требований, обуславливающих работоспособность деталей КШМ, этот механизм, как и все другие механизмы автомобиля, должен быть выполнен конструктивно таким образом, чтобы обеспечить удобство его ремонта и обслуживания. Это обеспечивается применением практичных типов соединений деталей и рациональных компоновочных решений, позволяющих получить доступ к любой группе деталей или детали КШМ при замене, ремонте или обслуживании.

Все детали КШМ делятся на две группы: неподвижные и подвижные. К неподвижным деталям относятся корпус (картер и цилиндры), головка блока цилиндров и поддон картера. Подвижными частями КШМ являются поршни с кольцами и поршневыми пальцами, шатуны, коленчатый вал и маховик.

Корпус кривошипно-шатунного механизма

Корпус КШМ объединяет в себе картер и цилиндры (или цилиндр). Он является базовой частью (остовом) двигателя. На нем устанавливаются все механизмы и системы двигателя, и посредством него двигатель устанавливается на автомобиле.
Корпус двигателя может иметь три исполнения:

  • картер, к которому крепятся отдельные цилиндры;
  • картер, к которому крепятся цилиндры, объединенные в один блок цилиндров;
  • блок-картер, в котором все элементы отлиты как одно целое.

В настоящее время с отдельными цилиндрами производят только двигатели воздушного охлаждения, так как изготовление блока цилиндров с охлаждающимися ребрами (высотой до 18 мм) представляет значительные технологические трудности.
Применение отдельных блоков цилиндров в современных автомобильных двигателях также ограничено. Они чаше всего используются в мощных дизелях, картеры и цилиндры которых изготовляют из легких сплавов. В большинстве автомобильных двигателей применяются блок-картеры несколько более сложные в изготовлении, но обладающие наиболее высокой жесткостью.

В зависимости от того, какие элементы корпуса двигателя воспринимают основную нагрузку, существуют следующие варианты силовых схем:

  • с несущим блоком цилиндров (рис. 1, а) ;
  • с несущими цилиндрами;
  • с несущими силовыми шпильками (рис. 1, б) .

Первый вариант получил наибольшее распространение. Здесь нагрузки от рабочих газов воспринимаются стенками цилиндров, рубашкой охлаждения (полости для прохода охлаждающей жидкости), головкой блока цилиндров, поперечными перегородками картера, которые заканчиваются коренными опорами.

Второй вариант используется в двигателях с отдельными цилиндрами, соединенными с картером и головкой блока цилиндров короткими болтами или шпильками. В этом случае под действием давления рабочего тела стенки цилиндров и рубашки охлаждения, если она имеется, испытывают напряжение разрыва.

В третьем варианте блок цилиндров (или отдельные цилиндры), головка блока цилиндров и крышки коренных подшипников стягиваются длинными силовыми шпильками, ввернутыми в перегородки картера.

Блок-картер КШМ

Блок-картер отливают из чугуна или алюминиевого сплава. Блок-картер V-образного двигателя показан на рис. 2 .
Горизонтальная перегородка делит блок-картер на верхнюю и нижнюю части. В верхней части блока и горизонтальной перегородке имеются отверстия под цилиндры или гильзы цилиндров. В вертикальных перегородках картера есть отверстия под подшипники коленчатого вала, которые обрабатывают в сборе с крышками подшипников. Поэтому крышки подшипников не взаимозаменяемы.
Для того чтобы повысить жесткость блок-картера, крышки коренных опор у некоторых двигателей дополнительно крепят к картерной части блока поперечными стяжными болтами.

В блок-картере выполнены отверстия для деталей механизма газораспределения, имеются плоскости для крепления фильтров, насосов и других механизмов.
Блок-картеры могут быть с цилиндрами, выполненными непосредственно в блоке, и со сменными гильзами цилиндров.

Гильзы цилиндров могут быть «мокрыми» или «сухими»: «мокрые» — если их наружные стенки омываются охлаждающей жидкостью, «сухие» — запрессовываются в расточенные отверстия цилиндров и не имеют контактов с охлаждающей жидкостью.

Для увеличения жесткости блок-картера двигателя выполняют следующее:

  • объединяют все основные элементы в единый силовой каркас, имеющий пространственную конфигурацию (рис. 2) ;
  • увеличивают число несущих перегородок, расположенных в одной плоскости с коренными опорами коленчатого вала;
  • делают дополнительное оребрение перегородок и стенок;
  • располагают плоскости разъема картера ниже оси коленчатого вала;
  • используют V-образную компоновку;
  • применяют туннельный картер.

Наиболее жесткую конструкцию имеет блок-картер с неразъемным туннельным картером (рис. 3) , который обычно применяется при использовании в качестве коренных опор подшипников качения. В этом случае коленчатый вал монтируется с торца двигателя, и наружные обоймы подшипников устанавливаются в расточенных гнездах картера. Туннельный блок-картер наиболее сложен в производстве.

Обычно блок-картеры выполняют из серого чугуна или из алюминиевых сплавов. Себестоимость блок-картера, выполненного из серого чугуна, ниже себестоимости аналогичного картера, выполненного из алюминиевого сплава, поскольку чугун технологичнее в обработке и дешевле алюминия. Серый чугун обладает хорошими литейными качествами, прочен и легко обрабатывается. Отливки из серого чугуна не склонны к короблению и образованию трещин.

Если чугунные блоки отливаются в земляные формы, то блоки из алюминиевого сплава изготовляются литьем под давлением в разборные металлические формы. При этом обеспечивается высокая точность и производительность. Существенным недостатком алюминиевых блоков является их повышенное тепловое расширение, что в процессе работы может вызвать искажение форм. Основное достоинство – малая масса по сравнению с чугунными блоками.
Вероятность деформации блок-картера при эксплуатации во многом определяется технологией его изготовления.

Искажение формы (деформация) может произойти при неудачном выборе компоновочной схемы КШМ двигателя, неравномерном нагреве, а также вследствие механической и особенно термической перегрузки двигателя при работе.
Кроме того, это может произойти при сборке двигателя, если не соблюдать рекомендуемый порядок и моменты затяжки болтов и гаек крепления головки блока цилиндров и крышек коренных подшипников.

Недопустимые деформации элементов блок-картера вплоть до разрушения могут произойти при его заправке холодной охлаждающей жидкостью при разогретом двигателе, а также при замерзании воды в рубашке охлаждения.
Заправка системы охлаждения горячего двигателя холодной охлаждающей жидкостью может привести не только к деформации и разрушению базовых деталей – блока цилиндров, головки блока, но также вызвать повреждение элементов резьбовых соединений, изменение взаимного положения деталей и нарушение технологических регулировок.

ГРМ, КШМ и ГБЦ

Неисправности кривошипно-шатунного механизма — самые серьезные неисправности двигателя. Их устранение очень трудоемкое и затратное, так как, зачастую, предполагает проведение капитального ремонта двигателя.

К неисправностям кривошипно-шатунного механизма относятся:

  • износ коренных и шатунных подшипников;
  • износ поршней и цилиндров;
  • износ поршневых пальцев;
  • поломка и залегание поршневых колец.

Основными причинами данных неисправностей являются:

  • выработка установленного ресурса двигателя;
  • нарушение правил эксплуатации двигателя (использование некачественного масла, увеличение сроков технического обслуживания, длительное использование автомобиля под нагрузкой и др.)

Практически все неисправности кривошипно-шатунного механизма (КШМ) могут быть диагностированы по внешним признакам, а также с помощью простейших приборов (стетоскопа, компрессометра). Неисправности КШМ сопровождаются посторонними шумами и стуками, дымлением, падением компрессии, повышенным расходом масла.

При каком «критическом» значении компрессии на двигателе нужно делать ремонт двигателя с заменой поршневой? Обычно замену поршневой откладывают до последнего. И вот почему: Отсутствие уверенности в квалификации исполнителей; Значимая вероятность, что кроме «простой» замены колец, понадобится замена «колпачков», переднего или заднего сальников коленвала; Может оказаться, что «стоит поменять и ремень ГРМ»; Не дай бог, выяснится повышенная эллипсность гильз, как следствие или «перегильзовка» или их проточка (с заменой поршней); Вкладыши могут оказаться «уже с задирами» и т.д. и т.п. А это всё «выливается» в очень значимые деньги. Формально, допускается разница между компрессией в цилиндрах до 1 кг/см 2 , но в наших условиях соблюдать этот критерий — нереально.

Основными неисправностями газораспределительного механизма (ГРМ) являются:

  • нарушение тепловых зазоров клапанов (на двигателях с регулируемым зазором);
  • износ подшипников, кулачков распределительного вала;
  • неисправности гидрокомпенсаторов (на двигателях с автоматической регулировкой зазоров);
  • снижение упругости и поломка пружин клапанов;
  • зависание клапанов;
  • износ и удлинение цепи (ремня) привода распределительного вала;
  • износ зубчатого шкива привода распределительного вала;
  • износ маслоотражающих колпачков, стержней клапанов, направляющих втулок;
  • нагар на клапанах.

Можно выделить следующие причины неисправностей ГРМ (они, в основном, аналогичны причинам неисправностей кривошипно-шатунного механизма):

  • выработка установленного ресурса двигателя и, как следствие, высокий износ конструктивных элементов;
  • нарушение правил эксплуатации двигателя, в том числе использование некачественного (жидкого), загрязненного масла, применение бензина с высоким содержанием смол, длительная работа двигателя на предельных оборотах.

Самой серьезной неисправностью газораспределительного механизма является т.н. зависание клапанов, которое может привести к серьезным поломкам двигателя. Причин у неисправности две. Применение некачественного бензина, сопровождающееся отложением смол на стержнях клапана. Другой причиной является ослабление или поломка пружин клапанов. В этом случае на высоких оборотах двигателя клапан не успевает сесть в «седло», искривляется и заклинивает (зависает) в направляющей втулке. К счастью, данная неисправность на современных автомобилях встречается достаточно редко.

Отдельно необходимо сказать о неисправностях гидрокомпенсаторов. При использовании жидкого или сильно загрязненного масла гидрокомпенсатор перестает выполнять свою основную функцию, а именно автоматически компенсировать зазоры в ГРМ. Дальнейшая эксплуатация двигателя может привести к заклиниванию гидрокомпенсаторов.

Нарушение теплового зазора на двигателях с регулируемым зазором может произойти по причине износа подшипников и кулачков распределительного вала, износа зубчатого шкива привода распределительного вала, а также вследствие неправильной регулировки.

Неисправности ГРМ достаточно сложно диагностировать, т.к. сходные внешние признаки могут соответствовать нескольким неисправностям. Зачастую конкретная неисправность устанавливается непосредственным осмотром конструктивных элементов ГРМ со снятием крышки головки блока цилиндров.

Большинство неисправностей газораспределительного механизма приводит к нарушениям фаз газораспределения, при которых двигатель начинает работать нестабильно и не развивает номинальной мощности.

В данном учебном пособии рассказывается о методах диагностики и регулировки газораспределительного и кривошипно-шатунного механизмов.

ГРМ, КШМ и ГБЦ

Головка блока цилиндров (ГБЦ) – важнейший элемент двигателя внутреннего сгорания, который закрывает сверху цилиндры и крепится к блоку цилиндров при помощи болтов крепления головки или направляющих шпилек. ГБЦ, по сути, представляет собой крышку, которая накрывает цилиндры ДВС.

ГБЦ выполняет ряд важнейших функций:

  • крышка головки блока цилиндров осуществляет защитную функцию;
  • в крышке находится маслозаливная горловина;
  • прокладка головки блока цилиндров обеспечивает уплотнение в месте прилегания ГБЦ к БЦ;
  • головка блока является местом для размещения натяжителя цепи и привода распределительного вала в отдельной полости спереди ГБЦ;
  • резьбовые отверстия для свечей зажигания и инжекторных форсунок находятся в корпусе головки;
  • камеры сгорания полностью или частично располагаются в ГБЦ;
  • головка является местом установки газораспределительного механизма (ГРМ);
  • в корпусе головки предусмотрены отверстия для установки впускного и выпускного коллектора;

Головку блока цилиндров изготавливают посредством литья из легированного чугуна или алюминиевых сплавов. После завершения отливки головку блока цилиндров подвергают процессу искусственного старения по специальной технологии. Это делается для того, чтобы снять с элемента остаточное напряжение, так как в процессе работы ГБЦ испытывает серьезные нагрузки. Для рядного двигателя устанавливается одна ГБЦ. На V-образных двигателях головка устанавливается на каждый ряд цилиндров. Существуют ГБЦ с нижним расположением клапанов, а также головки с верхним расположением клапанов. Первый тип имеет упрощенную конструкцию сравнительно со вторым.

В ГБЦ частично или полностью размещены камеры сгорания. Внутри головки присутствуют впускные и выпускные каналы, каналы «рубашки охлаждения» для циркуляции охлаждающей жидкости, а также масляные каналы смазочной системы двигателя. Впускные каналы для подачи топливно-воздушной рабочей смеси или только воздуха в цилиндры, а также каналы для выпуска отработавших газов, ведут в каждую отдельную камеру сгорания. Каждый из каналов заканчивается седлами клапанов, которые запрессованы в головку блока цилиндров. Седло клапана изготавливают из чугуна или других материалов.

Нижняя плоскость ГБЦ, которая прилегает к блоку цилиндров, выполняется более широкой. Это сделано для получения наилучшего уплотнения с поверхностью блока. Дополнительное уплотнение места соединения ГБЦ и блока достигается за счет использования прокладки головки блока цилиндров. Болты крепления имеют строгую последовательность в процессе затяжки, а также необходимо соблюдать момент затяжки. Такие болты затягивают при помощи динамометрического ключа.

Верхняя часть головки блока закрывается крышкой, которая называется клапанной крышкой и крепится к головке через уплотнительную резиновую прокладку. Крышка головки блока цилиндров изготавливается из алюминиевых сплавов или листовой стали. Головка блока цилиндров двигателя современного автомобиля может иметь сложную конструкцию в зависимости от особенностей устройства механизма газораспределения.

Как самому определить прогар клапана двигателя. Основные симптомы погоревшего клапана, точное выяснение причин троения мотора. Диагностика, полезные советы.

Основные способы ремонта треснувшего блока цилиндров двигателя. Обнаружение трещины, ремонт при помощи сварки, расклепывания или нанесения эпоксидного слоя.

Почему антифриз или тосол поадают в цилиндры двигателя и что делать в такой ситуации. Как самому определить наличие тосола в цилиндрах, способы ремонта.

Особенности затяжки головки блока цилиндров двигателя внутреннего сгорания. Затяжка болтов крепления ГБЦ динамометрическим ключом: усилие и порядок обтяжки.

Как самостоятельно определить, что прокладка головки блока цилиндров прогорела. Рекомендации по протяжке ГБЦ после замены. Какую прокладку лучше выбрать.

Назначение блока цилиндров в конструкции ДВС. Разновидности, материалы и способы изготовления. Преимущества и недостатки блоков из чугуна и алюминия.

Тест 2. Кривошипно-шатунный механизм

1. KШM ПРЕДНАЗНАЧЕН ДЛЯ ПРЕОБРАЗОВАНИЯ ПОСТУПАТЕЛЬНОГО ДВИЖЕНИЯ ШАТУНА ВО_____ ДВИЖЕНИЕ ВАЛА.

2. ШАТУН СОЧЛЕНЕН С ПОРШНЕМ ПРИ ПОМОЩИ ПОРШНЕВОГО ______.

Выберите номера всех правильных ответов

3. МАТЕРИАЛ ИЗГОТОВЛЕНИЯ ГОЛОВОК БЛОКА ЦИЛИНДРОВ:

2) углеродистая сталь;

3) легированная сталь;

4) алюминиевый сплав.

5) высокопрочная легированная сталь.

МАТЕРИАЛ ИЗГОТОВЛЕНИЯ ШАТУНОВ

7) углеродистая сталь;

8) легированная сталь;

9) алюминиевый сплав;

10) высокопрочная легированная сталь.

1) уплотнение камеры сгорания;

2) ограничение частоты вращения;

3) смещение оси поршневого пальца относительно оси цилиндра

С ЦЕЛЬЮ ИСКЛЮЧЕНИЯ

4) разноса двигателя;

5) прорыва газов в картер;

6) стука поршня о стенку цилиндра.

5. ГИЛЬЗА ЦИЛИНДРА МОКРОГО ТИПА, ТАК КАК ОНА:

1) контактирует с топливом;

2) омывается горячими газами;

3) смазывается моторным маслом;

4) запрессовывается в блок со смазкой;

5) омывается охлаждающей жидкостью.

6. БАЗОВОЙ ДЕТАЛЬЮ КШМ И ВСЕГО ДВИГАТЕЛЯ ЯВЛЯЕТСЯ:

3) головка блока;

4) коленчатый вал;

5) блок цилиндров.

7. ПОДВИЖНЫЕ ДЕТАЛИ КШМ:

5) головка блока;

6) поддон картера;

7) блок цилиндров;

8) коленчатый вал;

9) поршневой палец;

10) пружины клапанов;

11) поршневые кольца;

12) прокладка головки блока.

8. НЕПОДВИЖНЫЕ ДЕТАЛИ КШМ:

5) головка блока;

6) поддон картера;

7) блок цилиндров;

8) коленчатый вал;

9) поршневой палец;

10) пружины клапанов;

11) поршневые кольца;

12) прокладка головки блока.

9. ПРОРЕЗИ НА ЮБКЕ ПОРШНЯ ДЛЯ:

1) снижения нагрева;

2) уменьшения массы поршня;

3) увеличения прочности поршня;

4) компенсации теплового расширения;

5) отвода масла со стенок цилиндра.

10. МАССЫ РАЗЛИЧНЫХ ПОРШНЕЙ ДВИГАТЕЛЯ НЕ ДОЛЖНЫ ОТЛИЧАТЬСЯ БОЛЕЕ ЧЕМ НА:

11. ЗАМКИ ТРЕХ КОМПРЕССИОННЫХ КОЛЕЦ РАСПОЛАГАЮТ ПОД УГЛОМ ДРУГ К ДРУГУ:

12. СПОСОБЫ УПЛОТНЕНИЯ ГИЛЬЗЫ ЦИЛИНДРА

1) прокладкой головки блока;

2) асбестовым шнуром;

3) резиновыми кольцами;

4) самоподжимным сальником;

5) медным кольцом.

13. МАТЕРИАЛ АНТИФРИКЦИОННОГО СПЛАВА ВКЛАДЫШЕЙ КОЛЕНЧАТОГО ВАЛА:

3) свинцовистая бронза;

4) оловянистый алюминиевый сплав.

14. НОМЕРА ПОЗИЦИИ И НАЗВАНИЯ ЭЛЕМЕНТА КОЛЕНЧАТОГО ВАЛА (РИС. 2.1):

IV. Шатунная шейка;

V. Коренная шейка.


Рис. 2.1. Коленчатый вал

Выберите номера всех правильных ответов

15. ОТВЕРСТИЯ В КОЛЕНЧАТОМ ВАЛУ ВЫПОЛНЯЮТСЯ ДЛЯ ПОДАЧИ К ШАТУННЫМ ПОДШИПНИКАМ:

4) горючей смеси;

5) картерных газов;

6) сжиженного газа.

16. КОЛЕНЧАТЫЙ ВАЛ ФИКСИРУЕТСЯ ОТ ОСЕВОГО СМЕЩЕНИЯ:

1) стопорной шайбой;

2) упорными кольцами;

3) упорными вкладышами;

4) упорными шарикоподшипниками

5) центральной части;

6) носка или хвостовика.

17. МАТЕРИАЛ БЛОКА ЦИЛИНДРОВ:

4) алюминиевый сплав.

18. ТЕМПЕРАТУРА (» с) НАГРЕВА ПОРШНЯ В МАСЛЕ ПРИ ЕГО СБОРКЕ С ПАЛЬЦЕМ:

19. МАСЛОСЪЕМНОЕ КОЛЬЦО СЛУЖИТ ДЛЯ:

1) упрочения поршня;

2) снижения детонации;

3) уплотнения цилиндра;

4) уменьшения массы поршня;

5) снятия излишка масла со стенок;

6) уменьшения расхода масла на угар.

20. НОМЕРА ПОЗИЦИИ И НАЗВАНИЯ ЭЛЕМЕНТА ПОРШНЯ (РИС. 2.2):

IV. Уплотняющий пояс.

21. КОЛЕНЧАТЫЕ ВАЛЫ ИЗГОТАВЛИВАЮТ ИЗ:

1) серого чугуна;

2) легированной стали;

3) низкоуглеродистой стали;

4) среднеуглеродистой стали;

5) модифицированного чугуна

22. ШЕЙКИ КОЛЕНЧАТОГО ВАЛА:

6) закаливают ТВЧ;

7) подвергают отпуску

8) придания товарного вида;

9) повышения жесткости вала; 10) повышения износостойкости.

Кривошипно-шатунный механизм двигателя внутреннего сгорания: устройство, назначение, как работает

Автор: AutoLubitel Просмотров: 33008

Кривошипно-шатунный механизм (КШМ) представляет собой важный механизм автомобильного двигателя, который преобразовывает поступательные движения поршневой системы во вращательное движение коленчатого вала двигателя, от которого, в свою очередь, это движение передается на колеса автомобиля, что и приводит машину в движение.

Принцип работы кривошипно-шатунного механизма

Под давлением газов, которые образуются в цилиндрах двигателя при сгорании топливно-воздушной смеси, поршень совершает поступательное движение по направлению к коленчатому валу.

Важные детали механизма, а именно: поршень, шатун и вал помогают преобразовывать движения поступательного характера в движения вращательного, что в свою очередь запускает вращение колес автомобиля.

«Cshaft». Под лицензией Public domain с сайта Викисклада — https://commons.wikimedia.org/wiki/File:Cshaft.gif#mediaviewer/%D0%A4%D0%B0%D0%B9%D0%BB:Cshaft.gif

В обратном порядке взаимодействие вала и поршня выглядит следующим образом: вал при вращательном движении через детали механизма – вал, шатун и поршень, преобразовывает энергию в поступательное поршневое движение.

By A. Schierwagen using OpenOffice Draw [GFDL (http://www.gnu.org/copyleft/fdl.html) or CC-BY-SA-3.0 (http://creativecommons.org/licenses/by-sa/3.0/)], via Wikimedia Commons

Как устроен кривошипно-шатунный механизм

Механизм состоит из деталей, как подвижных, так и неподвижных.

Детали подвижного типа:

  • поршень;
  • маслосъемное кольцо (1);
  • компрессионные кольца (2);
  • поршневой палец (3);
  • стопорное кольцо (4);
  • шатун;
  • крышка шатуна (5);
  • крепежный болт (6);
  • вкладыши (7);
  • втулка (8);
  • коленчатый вал;
  • шатунная шейка (9);
  • противовес (10);
  • коренная шейка (11);
  • маховик

Детали неподвижного типа:

Поршень с кольцами и пальцем

Поршень – это небольшая цилиндрическая деталь, изготовленная из алюминиевого сплава. Его основным назначением является преобразование давления выделяемых газов в поступательное движение, передаваемое в шатун. Возвратно-поступательное движение обеспечивается за счет гильзы.

Поршень состоит из юбки, головки и дна (днища). Дно может иметь разную форму (выпуклую, вогнутую или плоскую), в нем содержится камера сгорания. На головке расположены небольшие канавки для поршневых колец (маслосъемных и компрессионных).

Кольца компрессионного типа предотвращают возможное попадание газов в двигательный картер, а кольца малосъемного типа предназначены для удаления лишнего масла со стенок цилиндра.

Юбка оснащена специальными бобышками с отверстиями, для установления поршневого пальца, соединяющий поршень и шатун.

Шатун

Шатун – еще одна деталь КШМ, которая изготавливается из стали методом штамповки или ковки, оснащенная шарнирными соединениями. Шатун предназначен для передачи энергии движения от поршня к валу.

Шатун складывается из верхней, разборной нижней головки и стержня. Верхняя головка соединяется с поршневым пальцем. Нижнюю разборную головку можно соединять с шейкой вала с помощью крышек (шатунных).

Кривошип (колено)

К любому кривошипу (колено) крепится шатун поршня. Зачастую кривошип располагается от оси шеек в определенном радиусе, что определяет ход поршня. Именно эта деталь дала название кривошипно-шатунному механизму.

Коленчатый вал

Еще одна подвижная деталь механизма сложной конфигурации, изготовленная из чугуна или стали. Основным назначением вала является преобразование поступательного поршневого движения поршня во вращательный момент.

Коленчатый вал складывается из шеек (коренных, шатунных), щек (соединяющих шейки) и противовесов. Щеки создают равновесие при работе всего механизма. Внутри шейки и щеки оснащены небольшими отверстиями, через которые под давлением происходит подача масла.

Маховик

Маховик, как правило, установлен на конце вала. Изготавливается из чугуна. Маховик предназначен для повышения равномерного вращения вала для запуска двигателя с помощью стартера.

В настоящее время чаще применяются маховики двухмассового типа – два диска, которые достаточно плотно соединены между собой.

Блок цилиндров

Это неподвижная деталь КШМ, которая изготавливается из чугуна или алюминия. Блок предназначен для направления поршней, именно в них осуществляется весь рабочий процесс.

Блок цилиндров может быть оснащен рубашками охлаждения, постелями для подшипников (распределительного и коленчатого вала), точкой крепления.

Головка цилиндров

Эта деталь оснащена камерой сгорания, каналами (впускными и выпускными), отверстиями для свечей зажигания, втулками и седлами. Головка цилиндров изготавливается из алюминия.

Как и блок, головка также имеет рубашку охлаждения, которая соединяется с рубашкой цилиндра. А вот герметичность этого соединения обеспечивается специальная прокладка.

Закрывается головка небольшой штампованной крышкой, при этом между ними устанавливается резиновая прокладка, устойчивая к воздействию масел.

Поршень, гильза цилиндров и шатун образуют то, что автомобилисты обычно называют цилиндр. Двигатель может иметь от одного до 16, а иногда и больше цилиндров. Чем больше цилиндров, тем больше общий рабочий объем двигателя и, соответственно, тем больше его мощность. Но нужно понимать, что при этом одновременно с мощностью растет и расход топлива. Цилиндры в двигателе могут располагаться по различным компоновочным схемам:

  • рядная (оси всех цилиндров располагаются в одной плоскости)
  • V-образная компоновка (оси цилиндров располагаются под углом 60 или 120 градусов в двух плоскостях)
  • оппозитная компоновка (оси цилиндров располагаются под углом 180 градусов)
  • VR-компоновка (аналогично V-образной, но плоскости располагаются под небольшим углом относительно друг друга)
  • W-образная компоновка представляет собой совмещение на одном коленчатом валу двух VR-компоновок, расположенных V-образно со смещением относительно вертикали

От компоновочной схемы зависит балансировка двигателя, а так же его размер. Наилучшей балансировкой обладает оппозитный двигатель, однако он редко используется на автомобилях из-за конструктивных особенностей.

Так же отличным балансом обладает рядный шестицилиндровый двигатель, но его применение на современных автомобилях практически невозможно из-за его громоздкости. Наибольшее распространение получили V-образные и W-образные двигатели из-за наилучшего сочетания динамических характеристик и конструктивных особенностей.

Неисправности газораспределительного механизма

Основными неисправностями газораспределительного механизма (ГРМ) являются:

  • нарушение тепловых зазоров клапанов (на двигателях с регулируемым зазором);
  • износ подшипников, кулачков распределительного вала;
  • неисправности гидрокомпенсаторов (на двигателях с автоматической регулировкой зазоров);
  • снижение упругости и поломка пружин клапанов;
  • зависание клапанов;
  • износ и удлинение цепи (ремня) привода распределительного вала;
  • износ зубчатого шкива привода распределительного вала;
  • износ маслоотражающих колпачков, стержней клапанов, направляющих втулок;
  • нагар на клапанах.

Можно выделить следующие причины неисправностей ГРМ (они, в основном, аналогичны причинам неисправностей кривошипно-шатунного механизма):

  • выработка установленного ресурса двигателя и, как следствие, высокий износ конструктивных элементов;
  • нарушение правил эксплуатации двигателя, в том числе использование некачественного (жидкого), загрязненного масла, применение бензина с высоким содержанием смол, длительная работа двигателя на предельных оборотах.

Самой серьезной неисправностью газораспределительного механизма является т.н. зависание клапанов, которое может привести к серьезным поломкам двигателя. Причин у неисправности две. Применение некачественного бензина, сопровождающееся отложением смол на стержнях клапана. Другой причиной является резонанс, ослабление или поломка пружин клапанов. В этом случае при достижении поршнем верхней мертвой точки клапан не успевает сесть в «седло». К счастью, данная неисправность на современных автомобилях встречается достаточно редко.

Отдельно необходимо сказать о неисправностях гидрокомпенсаторов. При использовании жидкого или сильно загрязненного масла гидрокомпенсатор перестает выполнять свою основную функцию, а именно автоматически компенсировать зазоры в ГРМ. Дальнейшая эксплуатация двигателя может привести к заклиниванию гидрокомпенсаторов.

Нарушение теплового зазора на двигателях с регулируемым зазором может произойти по причине износа подшипников и кулачков распределительного вала, износа зубчатого шкива привода распределительного вала, а также вследствие неправильной регулировки.

Неисправности ГРМ достаточно сложно диагностировать, т.к. сходные внешние признаки могут соответствовать нескольким неисправностям. Зачастую конкретная неисправность устанавливается непосредственным осмотром конструктивных элементов ГРМ со снятием крышки головки блока цилиндров.

Большинство неисправностей газораспределительного механизма приводит к нарушениям фаз газораспределения, при которых двигатель начинает работать нестабильно и не развивает номинальной мощности.

Ссылка на основную публикацию